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The dynamics of fluctuations of a family of macroscopic quantities in one-dimensional systems �which
includes the roughness and the total length of an interface, and the end-to-end distance of a filament� are
analyzed. At thermodynamic equilibrium, the time-correlation function of these quantities can be expressed in
terms of time-correlation functions of local quantities. In some cases, macroscopic quantities exhibit a univer-
sal diffusive behavior, which is not reached by local quantities.
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Large fluctuations are ubiquitous in one-dimensional sys-
tems. Some examples of fluctuating one-dimensional sys-
tems are biopolymers �1� in Hele-Shaw cells, atomic steps on
crystal surfaces �2�, or magnetic domain walls in two dimen-
sions �3�. Fluctuation dynamics are usually analyzed by
means of time-correlation functions �TCF� of local quanti-
ties. But many important features or applications are related
to global quantities. As an example, the surface contribution
to conductance fluctuations in nanometric electric lines is
proportional to the fluctuations of the total number of surface
defects. This number is proportional to the length of atomic
steps on the surface �4�. Therefore, there is a contribution to
conductance fluctuation which is proportional to total step
length fluctuations �4�. Other macroscopic quantities may be
of interest, such as the roughness of an atomic step, or the
end-to-end length of a fluctuating biopolymer �1,5,6�.

In the present paper, we focus on a family of quantities
defined as quadratic functionals. All quantities mentioned
above, such as the total length and the roughness of an inter-
face, or the end-to-end length of a filament, may be written
in terms of these functionals. The short-time behavior of
their TCFs is calculated. Two main results are obtained: �i�
macroscopic TCFs are explicitly related to the local TCFs at
thermodynamic equilibrium, and �ii� the equilibrium TCF of
some macroscopic quantities exhibits a universal diffusive
behavior, which cannot be reached by means of local quan-
tities.

Let us consider a one-dimensional system along x, de-
scribed by the function h�x , t�, where t is the time. The evo-
lution of h is governed by a linear Langevin equation as
follows:

�th�x,t� = ��h�x,t�� + ��x,t� , �1�

where � is a linear function of h and its derivatives with
respect to x, and � is a fluctuating Langevin force. The func-
tion h accounts for the position of an interface, or for the
local orientation of a filament. In the following the derivation
of the main results is first presented without reference to a
specific system. Thereafter, several precise cases will be dis-
cussed.

Assuming that the system is periodic along x, of period L,
the spatial Fourier transform of h�x , t� is defined as hk�t�
=�dxe−ikxh�x , t�, with k=2�� /L, where � is an integer. Here,
and in the following, the bounds of the integrals will be

−L /2, and L /2 when they are not specified. The amplitude of
the Fourier modes obeys a linear Langevin equation as fol-
lows:

�thk�t� = i�khk�t� + �k�t� . �2�

The noise has zero average, i.e., ��k�t��=0, and

��k�t��k��t��� = Bk�k+k���t − t���L/2�� , �3�

where �k is the Kronecker delta symbol, and � � denotes an
average over the realizations of the noise �, which is chosen
to be Gaussian. It is assumed that the systems enjoy the x
→−x symmetry and is stable, so that i�k= i�−k and
Re�i�k��0. For the sake of simplicity, it is also assumed
that the initial system is flat, i.e., h�x ,0�=0 �7�.

In order to focus on shape fluctuations rather than on the
global motion of the system, one may define

��x,t� = h�x,t� −
1

L
� dxh�x,t� . �4�

From this definition, �k�t�=hk�t� when k�0 and �k=0�t�=0.
Local quantities are quantities which can be measured at a

given abscissa x without the knowledge of what happens in
the rest of the system, and are therefore combinations of ��x�
and its spatial derivatives. Local TCFs are thus defined for
m	0 and t�
 t as

G�x
m��t,t�� = ��x

m��x,t��x
m��x,t��� , �5�

where �x
m��x , t� is the mth spatial derivative of �, and the

notation �x
0��x , t�=��x , t� is used. Upon substitution of the

solution of Eq. �2� into Eq. �5�, one finds

G�x
m��t,t�� =

1

2�L
	
k�0

k2m�k�t,t�� , �6�

where

�k�t,t�� =
Bk

2i�k
�ei�k�t�+t� − ei�k�t�−t�� . �7�

Let us consider the family of quadratic functionals
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Qp�t� =� dx��x
p��x,t��2. �8�

We shall provide examples of macroscopic quantities related
to Qp later, when we discuss some specific systems.

The temporal correlations of Q are defined as

G�Qp�t,t�� = ��Qp�t��Qp�t��� , �9�

where �Qp is the deviation of Qp from its average value as
follows:

�Qp�t� = Qp�t� − �Qp�t�� . �10�

The calculation of G�Qp involves the evaluation of four-point
correlation functions, which are decomposed into two-point
correlation functions for Gaussian processes �8�, leading to

G�Qp�t,t�� = 2	
k�0

k4p�k�t,t��2. �11�

During the initial roughening from the flat state, when
t , t��Re�i��−1, one finds �k�t , t��
 t, and one may thus in-

fer from Eqs. �6� and �11� that G�x
m

��t , t��
 t, while
G�Qp�t , t��
 t2 �9�. These early time scalings do not depend
on the precise form of i�k.

Since Re�i�k��0, the system reaches a stable steady state
at long times, which is identified with thermodynamic equi-
librium. The energy, defined as

E�t� =
�

2
� dx��x��x,t��2, �12�

then imposes the static spectrum as follows:

��k�t��k��t�� = L�k+k�
kBT

�k2 . �13�

The compatibility of this spectrum with that of the solution
��x , t� of Eq. �2� when t→ leads to

Bk = 4�i�k
kBT

�k2 . �14�

At equilibrium �i.e., when t , t�→�, correlation functions
G�t , t�� only depend on t− t�, and we shall define Geq���
=G�t , t+��, with �
0. An inspection of Eqs. �6�, �7�, and
�11� in the limit t , t�→ allows one to write

Geq
�Qp��� = 8�2L

kBT

�
Geq

�x
2p−1��2�� . �15�

Note that this relation is not valid during the initial transient
relaxation to equilibrium.

Using Eq. �15�, the derivation of TCFs of the macroscopic
and nonlinear quantities Qp, reduces to the derivation of lo-
cal TCFs for arbitrary m �including m�0, which is consis-

tent if Eq. �6� is taken as a definition of Geq
�x

m
�����. The fol-

lowing paragraphs are therefore devoted to the derivation of
the local TCFs.

We start with the static correlation functions. We shall
first notice that, when m increases, the correlation functions
probe the fluctuations in an increasingly local fashion. As a

consequence, the local static correlation functions diverge at
small scales for m
1 /2, and at large scales for m�1 /2 �10�
as follows:

Geq
�x

m��0� =
kBT

��
� �� 2�

a �2m−1

2m − 1
, m 


1
2

Z�2 − 2m�� L
2��1−2m, m �

1
2

� , �16�

where a is a microscopic cutoff �with a /L→0�, and Z is the
Riemann zeta function.

In order to proceed with the calculation of dynamic TCF,
one needs to specify the relaxation dynamics. For the sake of
simplicity, a power law is assumed as follows:

i�k = − Akn+2, �17�

where A
0 is a system-dependent constant.
Equilibrium will be reached when the slowest long wave-

length modes have relaxed, i.e., for ���sat, where

�sat = �L/2��2+n/A . �18�

The time scale �sat is, in general, the time above which cor-
relations vanish. In the following, the TCFs are derived at
equilibrium in the short-time limit ���sat. In such a limit,
the dynamics at a given point x of the system is essentially
independent of the boundary conditions. Indeed, their influ-
ence does not have enough time to propagate over the whole
system up to the point x. Hence, we expect our results to be
qualitatively valid not only for periodic boundary conditions,
but also for other types of boundary conditions.

When m
1 /2, the TCF reads �11�

Geq
�x

m���� =
kBT

2��

����
2 + n

�A��−�, �19�

where � denotes the gamma function, and

� =
2m − 1

2 + n
. �20�

Since Geq
�x

m
���� diverges for m�1 /2, a more suitable correla-

tion function is designed as

F�x
m��t,t�� = ���x

m��t� − �x
m��t���2�

= G�x
m��t,t� + G�x

m��t�,t�� − 2Geq
�x

m��t,t�� , �21�

so that

Feq
�x

m���� = 2�Geq
�x

m��0� − Geq
�x

m����� . �22�

The correlation function F�Qp is defined in a similar way.
With these definitions, the equilibrium relation �15� also
holds when G is replaced by F. We may now discuss the case
m�1 /2, which leads to

Feq
�x

m���� =
kBT

2��
� �

−����
2+n �A��−�, m 
 − 1+n

2

�ln� �L/2��2+n

2A� � + 1 − ���A�� , m = − 1+n
2

1
1−2m−n� L

2��1−2m−n�A�� , m � − 1+n
2

,�
�23�

where ��0.577 is the Euler constant.
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Since it corresponds to the correlations of the directly
measurable quantity �, the case m=0, with Feq

� ���
�−�, has
been widely studied in the literature. But beyond the usual

�−� regime, the TCFs exhibit, for m negative enough, a
regime 
�, with a nontrivial L scaling. We call this regime
the diffusive regime, from the analogy with simple diffusion,
where the correlation function is linear in time.

While the diffusive regime cannot be observed from local
TCFs �which correspond to m	0�, it appears to be observ-
able via macroscopic TCFs. Indeed, from Eqs. �15� and �23�,
Feq

�Qp 
� when

p � p� =
1 − n

4
. �24�

Thus, the TCF of Q1, which corresponds to p=1
 p�, is
found to obey Eq. �19�. But Q0 may exhibit a diffusive be-
havior as follows:

Feq
�Q0��� 
 ��3/4L , n = 2

��ln��sat/�� + 1 − ��L , n = 1

�L2, n = 0
� . �25�

The diffusive scaling of the TCFs roots in their long wave-
length divergence. Indeed, when p� p�, the TCFs are domi-
nated by the behavior at k→0 �12�.

The diffusive scaling is universal in the sense that any
spatially integrated quantity may exhibit such a behavior. As
an example, consider the integral of �,

I1�x,t� = �
−x/2

x/2

dx���x�,t� . �26�

From the definition of �, one has I1�L , t�=0. Its equilibrium
TCF reads

Geq
�I1��� =

1

�L
lim
t→

	
k

k−2�k�t,t + ���1 − cos�kx�� . �27�

In the limit xn+2 /A���Ln+2 /A, the process is fully relaxed
at the scale x, and the system segment of size x behaves as a
local quantity, so that Feq

�I1����x2Feq
� ���. At short times,

when ��xn+2 /A, with x�L, the dynamics is not fully re-
laxed at the scale x, and the TCF of I1 exhibits the same
temporal scaling as that of Q0. Such a result can be traced
back to the fact that both quantities I1 and Q0 are obtained
from � by means of one spatial integration. Note that the fact
that I1 and Q0 are, respectively, linear and nonlinear in � does
not play a role here.

The above results are relevant to a variety of systems. In
the case where h�x , t� is the position of an interface along the
Cartesian coordinate x, the root mean square roughness W
and the total interface length L may be written as a function
of Qp as follows:

W�t�2 =
Q0�t�

L
, �28�

L�t� � L +
Q1�t�

2
, �29�

where the second relation is an approximation for small �x�.
Such an expression applies to atomic steps on crystal sur-
faces �2�, to a liquid-liquid interface in a Hele-Shaw cell, or
to a domain wall between two-dimensional �2D� magnetic
domains �3�. The term 2 in the exponent of Eq. �17� then
comes from the assumption of linear relaxation of the energy,
which should be proportional to the driving force �E /��

�xx�, where � denotes the functional derivative.

In the case of an isolated atomic step, n depends on the
mass transport mechanism �13�: n=0 for attachment-
detachment limited dynamics, n=1 for diffusion limited dy-
namics, and n=2 for edge diffusion limited dynamics �more
general, non-power-law relaxations have also been derived
�13–16��. The exponent n depends on the kinetics. For the
relaxation of the interface between two incompressible fluids
in a Hele-Shaw cell, hydrodynamics is described by Darcy’s
law, and n=1. In the case of a domain wall between 2D
magnetic domains with Glauber dynamics, one expects n
=0 �3�.

The interface roughness W2 is related to Q0 via Eq. �28�,
so that Feq

�W2
���=Feq

�Q0��� /L2. Therefore, the diffusive regime
can be probed for n=0, which corresponds, for example, to
attachment-detachment dynamics of an atomic step. Liquid-
liquid interfaces, with n=1, do not exhibit a diffusive behav-
ior for Q0.

For interface length fluctuations p=1
 p�, and one finds
from Eq. �19�,

Geq
�L��� = ���3 + n

2 + n
�� kBT

�
�2

L�2A��−1/�2+n�. �30�

Considering that h is the local orientation along the arclength
x, a description of a filament �such as an actin filament or a
microtubule� confined in a Hele-Shaw cell �1� is obtained. In
such a case, �=�x� is the curvature, E is the bending energy,
and � is the bending modulus.

The normal velocity vn of the filament in the cell plane is
related to the dynamics of the local orientation � via the
geometric relation �t�=vt�−�xvn, where vt is the tangential
velocity. The driving force is now �E /�u
�xx�, where u is
the filament position. Neglecting the tangential velocity and
assuming simple overdamped dynamics vn
�xx�, which is
linearized as �t�
−�xxxx�, leading to n=2, as confirmed by
experiments �1�.

Using Eq. �16� with p=0, it is found that the distortions �
will be small when L�L�, where L=�dx is now the fixed
total arclength of the polymer, and L�=� /kBT is the persis-
tence length. The end-to-end length Lee is then related to Q0
via

Lee�t� = L −
Q0

2
. �31�

Thus, Geq
�Lee���=Geq

�Q0��� /4, and using Eq. �25� with n=2,
one finds

BRIEF REPORTS PHYSICAL REVIEW E 76, 062601 �2007�

062601-3



Feq
�Lee��� 
 �3/4L . �32�

We here recover a result which was already derived in the
literature �6�. Our approach allows one to place this result
within a systematic framework. For example, other quanti-
ties, such as the time correlations of the total curvature en-
ergy E=�Q1 /2, may be derived as Geq

�E
L� −1/4.
As a summary, the time-correlation function of some mac-

roscopic quantities in a 1D system can be simply expressed

as a function of local-correlation functions in thermodynamic
equilibrium. The correlations of macroscopic quantities al-
lows one to explore a universal diffusive regime, which
could not be observed by means of local-correlation func-
tions. We have mentioned several systems where our results
could be relevant.
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